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SUMMARY

Two methods for solving linear systems of equations on the NAS Cray-2 are described.

One is a direct method; the other is an iterative method. Both methods exploit the archi-

tecture of the Cray-2, particularily the vectorization, and are aimed at structural analysis

applications. To demonstrate and evaluate the methods, they were installed in a finite

element structural analysis code denoted the Computational Structural Mechanics (CSM)

Testbed. A description of the techniques used to integrate the two solvers into the Testbed

is given. Storage schemes, memory requirements, operation counts, and reformatting pro-

cedures are discussed. Finally, results from the new methods are compared with results

from the initial Testbed sparse Choleski equation solver for three structural analysis prob-

lems. The new direct solvers described in this report achieve the highest computation

rates of the methods compared. The new iterative methods are not able to achieve as

high computation rates as the vectorized direct solvers but are best for well-conditioned

problems which require fewer iterations to converge to the solution.
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INTRODUCTION

The solution of linear systems of equations on advanced parallel and vector computers is

an important area of ongoing research. Much progress has been made in the development

of algorithms which exploit advanced computer architectures. (See Ortega and Voigt 1

for a comprehensive review of many of these algorithms.) The major benefit of these

algorithms is realized when they can be used to solve large-scale scientific applications

problems. This report describes two equation solvers, one a direct method and the other

an iterative method, which exploit the architecture of the NAS (National Aerodynamic

Simulator) Cray-2 supercomputers. A description of the incorporation of both equation

solvers into a very large finite element structural analysis code is given, and results are

presented for three example structural analysis problems. The reduction of overall analysis

time for each problem resulting from the new equation solvers is demonstrated.

The methods described in this report are used to solve the linear system of equations that

occur in structural analysis applications. The form of the equations is

Ku = f (1)

where K is assumed to be the symmetric, positive definite stiffness matrix, f is the load

vector and u is the vector of unknowns, typically the displacements. Such linear systems

can be large (from several thousands of unknowns to several hundred thousand unknowns)

and often require significant computing resources, for both memory and execution time.

The structure of the stiffness matrices in these applications is often sparse, although in

many applications an ordering of the nodes which minimizes the bandwidth makes banded

or profile (variable bandwidth) type storage of the matrices practical. The choice of a

particular method to solve Ku = .f will depend on the non-zero structure of K and, in

the case of the iterative methods described here, the condition number of K. In addition,

the architecture of the computer, particularly for modern vector and parallel computers,

influences both the choice and implementation of methods used to solve equation (1).

The organization of this report is as follows. First, the direct and iterative methods used

in this research are described, including key implementation details for the NAS Cray-2.

Second, the incorporation of these methods within a large-scale finite element structural

analysis code is outlined. Finally, results are presented to demonstrate the performance of

these equation solvers for three structural analysis applications problems.



DESCRIPTION OF METHODS

Direct methods usually consist of a factorization of the matrix K into triangular factors

followed by the forward and backward solution of the resulting triangular systems. Iterative

methods generally proceed from an initial guess, u °, for the solution of (1) and, through an

iterative process, refine the guess to a close approximation, u k, of the exact solution. The

choice of direct or iterative methods depends upon several factors which affect the relative

performance of the methods. The following sections describe a direct Choleski method

and a preconditioned conjugate gradient iterative method, and compare both methods by

contrasting their memory requirements and several performance factors.

Direct Methods: Choleski

This section describes several implementations of the Choleski factorization, K = LL T,

for symmetric, positive definite linear systems. Here, L is a lower triangular matrix and its

transpose is L T. Only the lower triangular part of K is stored, and L, which is computed

by modifying K, is stored in the same space as the original matrix K. The factorization

can be carried out in many ways but, in general, elements of L are computed from K a

row (or column) at a time beginning with row (or column) 1 of K and proceeding to the

last row (or column). Additionally, the matrices are stored either by rows or by columns,

and the various combinations of storage assignment and order of computation provide

many possible implementations of Choleski factorization. (See Ortega 2 for a thorough

description of these various implementations for vector and parallel computers.)

Implementation Considerations. The implementation chosen for Choleski factorization is

guided by the architecture of the computer used for the computations. For vector com-

puters such as the NAS Cray-2, algorithms which access vectors stored contiguously are

preferred to algorithms which access vectors using constant stride or integer array ref-

erences (indirect addressing). Also, on vector computers vector add-multiply updates

(vector ÷ vector x scalar), also referred to as saxpy operations, are preferred over inner

products when a choice is possible. The basic implementation chosen for the Cray-2,

sometimes referred to as the kji form, is illustrated in figure 1 for an n x n matrix with

semi-bandwidth m. This implementation is also referred to as an immediate update algo-

rithm meaning that as each column of L is computed, it is used to update all remaining

columns of K within the band. For each stage, k, a column of L is computed by a vector

divide (Loop2). Then columns k + 1 through k ÷ m of K are updated using column k of L

(Loop3). The key computation in figure 1 is the saxpy operation (Loop4) where column

k of L is multiplied by the coefficient Li,k and subtracted from column j of K. If the

coefficients of K are stored by columns, then the array accesses required in Loop4 are all

stride one, minimizing memory bank conflicts.

Two features of the Cray-2 architecture limit the speed of the saxpy operation. First, since

only one path exists between main memory and the vector registers, significant delays occur

when loading and storing operands to and from the registers. Second, the Cray-2 does not

provide %haining" of vector instructions. Chaining would allow the memory accesses,

multiplications and subtractions in the saxpy operation to be done almost concurrently,

thereby more than doubling the effective computation speed.
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Loopl k= 1 ton--1

_(1/2
Lk,k = "_k,k

Loop2 s = k + 1 to min(k + rn, n)

Ls,k = Ks,k/Lk,k

EndLoop2

Loop3 j = k + 1 to min(k + rn, n)

Loop4 i = j to min(k + m, n)

. Ki,j = Ki,i - Li,k * Lj,k

EndLoop4

EndLoop3

EndLoopl

wl/2
L ltl. _ Ift _ .s. a. ,'l. :, n

Figure 1. kji Choleski Factorization for n x n Matrix, Semi-Bandwldth= rn

Loop Unrolling. The algorithm shown in figure 1 was significantly improved by utilizing

the technique known as loop unrolling. Loop unrolling can minimize the number of time-

consuming memory references by holding vectors longer in the fast registers. In addition,

loop unrolling adds additional vector computations within a loop. As a result, many of the

multiplication and subtraction operations and memory references will overlap, leading to

greater speed. A modified kji method using loop unrolling is illustrated in the algorithm

shown in figure 2.

Looplk--lton-r-linstepsofr

Compute r columns of L updating

appropriate columns of K

Loop2 j = k + r to min(k + re, n)

Loop3 i = j to min(k + rn, n)

K_,i = Ki,y - Li,k * Lj,k - Li,k+l * Li,k+l--

• .. - Li,k+r-1 * Lj,k+r-1

EndLoop3

EndLoop2

EndLoopl

Finish any remaining columns of L

Figure 2. Modified kji Choleski Factorization for n x n Matrix,

Semi-Bandwidth = m, Using Loop Unrolling Level = r
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In the modified algorithm, column J of K is updated using r columns of L in Loop3.

The r columns are computed using a jki, or delayed update, algorithm. In a delayed

update factorization algorithm, the columns (rows) of L are computed as before but the

corresponding column (row) of K is updated just prior to computing that column (row)

of L by using previously computed columns (rows) of L. The modified algorithm in figure

2 is a combination of kji and jki Choleski factorization. This change means that column

j of K is loaded into the vector registers once for every r columns of L computed. In

loop3, the loading of each of the r columns of L into the vector registers can be overlapped

with the multiplication of the previous column of L by the appropriate scalar. Column

j is stored in main memory only after all r columns of L have been used to update it.

The modified algorithm, using r ----4, approximately doubled the computation rate of the

factorization compared to the original kji algorithm.

Local Memory. A further increase in the computation rate for the Choleski factorization

was realized by utilizing the fast local memory on the Cray-2. The 16,000 word local

memory, accessible only through registers, can improve vector performance significantly for

two reasons. First, the number of clock cycles required until the first word of a vector fetch

instruction arrives in the vector register is 4 cycles compared with a minimum of 57 cycles

from main memory. Secondly, memory bank conflicts are eliminated so that contiguous

elements of vectors stored in local memory can be accessed each clock cycle. For the

algorithm in figure 2, the r columns of L are copied into local memory before the updating

of the columns of K. Because of the immediate updating characteristic of the algorithm,

the r columns of L are accessed many times as the columns of K in Loop3 are updated.

The faster memory accesses of these columns of L resulting from the use of local memory

improved the computation rate by approximately 50 percent compared to the modified

algorithm in figure 2. The combination of the jki and kji Choleski algorithms is based on

modifications to the LINPACK 3 routine SGEFA for solving full general matrices using LU

factorization on the Cray-2. The SGEFA routine was obtained from NAS personnel and

also contains a machine language routine written by Cray Research personnel, Chao Wu

Yang and Kuo Long Wu.

Variable Bandwidth. Finally, an additional decrease in factorization time is achieved by

using variable bandwidth, or profile, storage of the columns of K and L rather than banded

storage. The algorithm in figure 2 is modified to accomodate variable length columns of K.

The time and memory savings resulting from using profile storage depends on the matrix

structure. The savings for some test problems was nearly a factor of two for memory

and more than a factor of two for execution time compared to the corresponding banded

storage algorithms. The combined effect of loop unrolling, use of local memory, and profile

storage of L and K reduced the computation time for the factorization by a factor of nearly

6 for some test problems, compared with the basic algorithm shown in Figure 1.

Triangular Solves. The solution of the triangular systems,

Lz = f (2a)

Lru -- z (2b)

4



is a forward solution, (2a), followed by a backwardsolution, (2b). As in the factorization of

K, there are several possible implementations of these processes. Since the factorization is

much more costly than the triangular solves, the data structure used for the decomposition

often determines the forward and backward solution process. The lower triangular matrix

is stored by columns for both algorithms in figures 1 and 2, so the forward solution is

carried out using saxpy operations with stride one vector accesses. Figure 3 shows the

column sweep algorithm used for the forward solution.

Looplk=lton

zk = fk/Lk,k

Loop2 i = 1 to min(m, n -- k)

fk+i --- fk+i -- Ik+i,k * Zk

EndLoop2

EndLoopl

Figure 3. Column Sweep Forward Solution, Lz = f, Semt-Bandwidth--m

For each column, k, the unknown zk is computed and then the linear combination of

scalar zk multiplied by column k of L is subtracted from f. The key computation is the

vector saxpy in Loop2 which uses stride 1 memory accesses. For the backward solution,

LTu -- z, the columns of L are now the rows of L T and so a different approach which uses

inner products is used to insure stride one memory accesses. Figure 4 illustrates this inner

product algorithm. For each row, the inner product in Loop2 is computed and used to

update the vector z. For very large bandwidth problems, this loop can be replaced with a

call to the Cray function SDOT for a small increase in the computation rate.

Loopl k = n to 1

Loop2 i = 1 to min(n - k, m)

Zk = Zk -- Lk+i,k * Uk-{-i

Endloop2

uk = zk/Lk,k

Endloopl

Figure 4. Backward Solution, LTu = z, Semi-Bandwtdth=m

The loop unrolling techniques used for the factorization can also be applied to the forward

and backward solutions but the increase in computation rate results in only a small decrease

in total solution time since the factorization time dominates. Local memory can also be

utilized in the solution process for smaller problems where the right hand side, z, can be

stored in the available local memory. Since the amount of local memory available is usually

less than 18,000 words, for very large problems local memory is not used for the triangular



solutions. The forward and backward solution times required only 1 to 3 percent of the

time required for factorization of K.

Iterative Methods: Preconditioned Coniugate Gradient

One class of iterative methods can be described by the general form

u k+l = Hu k + d, k = O, 1,... (3)

where the matrix H is related to the original matrix K either by a splitting of K or perhaps

by an approximate factorization of K into the product of upper and lower triangular

matrices. The vector d is calculated from the original right hand side, f. Some of the

well known iterative methods of this type include the Jacobi method, SOR (Successive

Overrelaxation) and SSOR (symmetric SOR). The convergence of such a method to the

desired solution depends upon the properties of H which in turn are influenced by the

original matrix K.

A second class of iterative methods includes the so-called minimization methods. For the

linear system (1), consider the associated quadratic function

Q(u) = 1/2uTKu--uT/ (4)

For positive definite matrices, K, the minimizer of Q is the solution of (1). Many iterative

methods which minimize Q are of the general form

uk+ 1 : u k _ akp k (s)

where the vectors, pk, are direction vectors and the scalar quantities, ak, determine the

distance along pk in which to move in updating u I'. Various methods for choosing the pJ'

define different iterative methods. See Ortega 2 for a discussion of both classes of iterative

methods on vector and parallel computers.

Implementation Considerations. The iterative method considered in this report, the pre-

conditioned conjugate gradient method, is of the second type and is shown in figure 5. The

notation (r, q) denotes the usual inner product of two vectors r and q. Most of the compu-

tations performed in figure 5 are easily vectorized on the Cray-2. Each iteration requires 2

inner products, (5a) and (5e) of figure 5, three vector updates (saxpy), (5b),(5c) and (Sf)

of figure 5, a matrix-vector multiplication (5a) of figure 5, and the preconditioning step

(Sd) of figure 5. The inner products and vector updates vectorize automatically using the

Cray CFT?7 compiler, and for large problems the Cray functions SDOT and SAXPY can

be used for a small improvement in the computation rate. For large problems, the matrix-

vector multiplication and the preconditioning step dominate the computations performed

by each iteration.

Matrix-Vector Multiplication. The stiffness matrices for very large structural analysis ap-

plications are generally very sparse, and so the matrix-vector multiplication algorithm

should be designed to perform well for sparse storage schemes. Two sparse storage schemes

6



Chooseu°; Set r ° = f -Ku °

Solve Mq ° -- r°; Set p0 __ q0

Loop k = 0, 1, ...

5a) ak = -(rk,q_)/(pk,gP k)

5b) x k+l = x k - akp k

5c) r k+l = r k + akKp k

Test for convergence

5d) Solve Mq k+1 = r k+l

5e) flk ----(rk+l,qk+l)/(rk,q k)

5f) pk+l = q_+l +/3kpk

Figure 5. Preconditioned Conjugate Gradient Algorithm

are considered for the conjugate gradient methods. The first scheme stores the coefficients

of K by diagonals in order to increase the vector lengths in the matrix-vector multipli-

cation. The length of the diagonals storing non-zero coefficients of K depends upon the

ordering of the equations in K and on the amount, if any, of extra zeros allowed between

succesive non-zeros in each diagonal. The second scheme uses sparse storage of the lower

triangular part of K by columns, the same storage used for the preconditioning matrix.

In either case, since K is symmetric, only the lower triangular part is stored.

The algorithm used for the matrix-vector multiplication for a symmetric n x n matrix

stored by diagonals is shown in figure 6. Matrix multiplication by diagonals is described

in Madsen 4 and Poole s. Each diagonal below the main diagonal, stored in A, beginning

at position ist, is used twice in Loop3 with the row and column indices reversed for p

and d. The FORTRAN code for Loop3 will not automatically vectorize since a potential

vector dependency exists. A vector dependency occurs in Loop3 whenever the sub-vector

of d beginning at colin overlaps with the sub-vector of d beginning at row. If the two

statements in Loop3 are separated into two loops to calculate drow+i and dcotra+i, the

dependency is removed and both loops are vectorized automatically. The disadvantage of

this approach is that the column of A used in both loops must then be loaded into the

vector registers twice, reducing the computation speed of the algorithm.

By exploiting the single path to memory on the Cray-2, the dependency in Loop3 can be

removed by ensuring that the updated sub-vector beginning at drow is stored before the

sub-vector beginning at dcozm is loaded from main memory. Unfortunately, the FORTRAN

programmer does not have this level of control over the manner in which the compiler gen-

erates assembly code instructions. However, the CFT77 compiler does generate assembly

code which will produce correct results for the FORTRAN code for Loop3 even when vec-

tor dependencies exist. The order of vector instructions generated by the CFT and CFT77

compilers for Loop3 with the compiler directive ivdep added to force vectorization is shown

in figure 8. Only the CFT77 compiler produces correct results when vector dependencies

exist in Loop3. The key difference in the two compilers is that the CFT generated code



Loopli-- 1 to n

di = ai * Pi

Endloopl

Loop2 k = 1 to ndiags

ist = istart(k)

row = irows(k)

colin = icolms(k )

len = ilens(k)

Loop3 i = 0 to den(k) - 1

drow+i : drow+i + Aist+i * Pcolm+i

dcolm+i : dcolm+i + Aist+i * Prow+i

Endloop3

Endloop2

CFT Compiler CFT77 Compiler

1) LOAD Pcot,_+i LOAD

2) LOAD aia+i LOAD

3) LOAD drow+i LOAD

4) LOAD Prow+i LOAD

5) MULT Aist+i * Pcotm+i MULT

6) LOAD deolm+i ADD

7) ADD drow+i 'b (Aist+i * Pcolm+i) STORE

8) MULT Aist+i * Prow+i LOAD

9) STORE drow+i MULT

10) ADD deoz,n+i + (Aist+i * Prow+i) ADD

11) STORE dcot.-,+i STORE

Pcolm+i

aist+i

drow+i

Prow+i

hist+i * Pcolra+i

drow+i + (Aist+i * Peolra+i)

drow+i

dcolm+i

hist+i * Prow+i

deolm+i + (Aist+i * Prow+i)

deolm + i

Figure 6. Matrix - Vector Multiplication Kp = d

for Diagonal Storage of K

loads dcoz,n+i (step 6) before it stores drow+i (step 9) while the CFT77 compiler stores

drow+i in step 7 and loads dcolm+i in step 8. A substantial improvement in computation

speed can be realized in this case by using the compiler directive ivdep and the CFT77

compiler.

The second algorithm used for the matrix-vector multiplication for an n × n matrix storing

only the lower triangular non-zero coefficients of K by columns, is shown in figure 7. Array

A stores the non-zero coefficients of K, and integer arrays indx, cptr, and clen store the row

indices for each coefficient, the starting position in A for each column of K, and the number

of non-zero coefficients in each column, respectively. In both the saxpy operation, updating



Loopl k-- 1to n

ist = cptr(k)

Loop2 i = 0 to clen(k) - 1

row = indz(ist + i)

drow = drow + Aiat+i * Pk

dk = dk + Aist+i * Prow

Endloop2

Endloopl

Figure 7. Matrix - Vector Multiplication Kp = d

drow, and the inner product, updating dk, non-contiguous elements of d are accessed using

the index array indx. This operation requires vector gather and scatter operations on

the Cray-2 which can add significantly higher overhead due to memory bank conflicts.

The saxpy and inner product operations can be carried out using calls to Cray functions

SPAXPY and SPDOT. However, the coefficients in each column of K, stored in array

A beginning at Ai,t, must then be loaded once for each call. To eliminate the unnecessary

extra load of each column of K, the functions are not used and the FORTRAN code for

Loop2 in figure 7 is vectorized automatically by the CFT77 compiler. The loop unrolling

techniques described above for the banded factorization cannot be used for this general

sparse matrix - vector multiplication scheme. The vector performance of this algorithm is

limited by both the indirect addressing and by the short vector lengths determined by the

average number of non-zero coefficients in each row.

Preconditioning. The preconditioning step, (Sd), in figure 5, enhances the convergence rate

of the basic conjugate gradient method at the expense of additional work performed at

each iteration. M is a symmetric positive definite matrix chosen to approximate K in

some sense. If the preconditioning matrix M is chosen to be the identity matrix then the

method shown in figure 5 is just the basic conjugate gradient method. If M is chosen to be

K then the method converges in one step exactly. The trade-off in selecting an appropriate

M is to choose a good approximation to K that improves convergence while minimizing

the overhead of solving the system (Sd). A simple choice for M is to choose M to be

the main diagonal of K. This choice is sometimes referred to as Jacobi preconditioning

and is denoted here as the JCG method. This preconditioning is most often implemented

by symmetrically scaling K so that the main diagonal entries are all 1.0. M is then the

identity matrix and the basic conjugate gradient method is used for the new system

where K = D-1/2KD-1/2, ¢z : D1/2u, f = D-1/2f and D is a diagonal matrix with

diagonal entries equal to the diagonal entries of K. This form of preconditioning adds

very little overhead to the basic conjugate gradient algorithm without preconditioning

since step (Sd) is not required at each iteration. The matrix-vector multiplication by

diagonals algorithm in figure 6 is used to obtain longer vector lengths and to eliminate the

9



needfor indirect addressingrequired by the sparse column storage scheme used in figure

7, improving the computation speed on the Cray-2. The major drawback of the JCG

method is that the convergence rate compared to the basic conjugate gradient method

is not improved as much as for some other preconditioning schemes. For some example

structures problems this simple preconditioning strategy is not sufficient for convergence

even when the number of iterations is equal to the number of equations.

Incomplete Choleski Factorization. A much studied choice for M has been to use incom-

plete Choleski factorization of K where K = LDL T + R. (See for example, Meijerink

and van der Vorst e,7 Poole and Ortega 8.) The matrix R is never actually calculated but

represents the error made by performing incomplete factorization of K. The incomplete

Choleski conjugate gradient method (ICCG) described in this report chooses L to be a

unit lower triangular matrix with the same non-zero structure as the corresponding part

of K. D is a diagonal matrix used for this form of Choleski decomposition, avoiding the

calculation of square roots in the decomposition process. This type of preconditioning

requires the additional work of both a forward and backward solution of sparse triangular

systems for each conjugate gradient iteration.

Loopl i = 1 to n

Di = (1 + "r) * Ki,_

Endloopl

Loop2k= 1ton-1

Loop 3 s = 1 to clen(k)

La,k = K_,k / Dk

Endloop3

Expand column k of L

Loop4 j = k + 1 to last row in column k

Dj = D i - Lj,k * Dk * Li,_

is Dj <= 0 ?; if so increase "r and start over

Loop5 i = 1 to clen(j)

row = indx(i)

Kid = Kid - Lrow,_ * Dk * Ly,_

Endloop5

Endloop4

Endloop2

Figure 8. kji Sparse Incomplete Choleski Factorizatton

Figure 8 shows the sparse kji algorithm used for the incomplete factorization of K. The

procedure used is similar to the Choleski decomposition described in figure 1. Sparse

storage is used for both K and L with an index array to store the row index for each

coefficient. The columns of L are computed starting with column 1 and proceeding through

10



column n in n stages. At the k th stage, column k of L is formed by a vector divide and

expanded so that the entire column out to the last non-zero coefficient is stored temporarily

while it is used to update columns of K beginning with column k + 1 in Loop4. The

key computational step in the incomplete factorization process is the vector updating of

columns of K by subtracting the product of the scalars Dk and Li,k and the elements of

vector Lrow,k from column j of K. The computations in Loop5 of figure 8 are performed

corresponding only to non-zero coefficients in column j of K while in Loop4 of figure 1

all of the elements produced by the linear combination of column k of L and the scalar

Li,k are subtracted from column j of K. This incomplete updating of the columns of

K ensures the same non-zero structure for L but requires that elements in column k of

L are accessed indirectly using the index array indx. Since K must be saved for the

matrix-vector multiplication in the conjugate gradient algorithm, the columns of K are

not actually modified but rather are initially copied into L and modified appropriately at

each stage.

The parameter "7 is used to enhance convergence and insure stability of the decomposi-

tion. Instability occurs in the incomplete decomposition when a negative element of D is

computed causing loss of positive definiteness of the preconditioning matrix. If a negative

diagonal element is computed during the factorization, "7 is increased, D is computed again,

and the factorization is repeated. The values chosen for "7 are determined experimentally

but in practice small positive values for "7 (0 < "_ < .15) work best. This modification to the

incomplete decomposition is based on the "shifting method" of Manteuffel 9. The vector

speed of the incomplete decomposition is limited by the short vector lengths (number of

non-zeros in each column of K) and by the indirect addressing used for the decomposition.

The sparse storage scheme and indirect addressing requirements make the use of the loop

unrolling techniques and local memory impossible for the incomplete decomposition.

Sparse Triangular Solves. The majority of the computational work for preconditioning con-

sists of forward and backward solutions at each iteration using the sparse matrix L. The

algorithm used for both solution steps is the same as previously described for the direct

Choleski method. However, the elements of vectors u and z in figures 3 and 4 must be ac-

cessed using index arrays due to the sparse storage scheme used for L. As before, indirect

addressing and shorter vector lengths limit the maximum attainable vector speed. Both

the incomplete factorization and the triangular solution steps required for preconditioning

use column storage of the sparse matrix, L. The matrix-vector multiplication algorithm

shown in figure 7 is used with incomplete Choleski preconditioning since sparse column

storage of K and L is used.

Comparison of Direct and Iterative Methods

Several factors affect both the choice of direct or iterative methods and the relative perfor-

mance of each method. Memory requirements vary greatly for direct and iterative methods

for many problems. A computationally slower method that can solve a given problem in

main memory may solve the linear system faster than a computationally faster method

that requires more memory than is available in main memory. In addition, a method

which is computationally slower on a vector computer such as the Cray-2 but requires

significantly less work may still have the fastest execution time for a given problem. This

11



section contrasts memory requirements and performance factors for the Choleski direct

solvers and the preconditioned conjugate gradient solvers on the NAS Cray-2.

Memory Requirements. The memory requirements for direct solvers are determined by

the storage of the factored matrix L. Though the original matrix K is usually sparse in

finite element applications, the factored matrix contains many new "fill" elements within

a band (or profile). The number of coefficients stored for a symmetric matrix with n

equations and semi-bandwidth m using banded storage is nm. For profile storage, the

number of coefficients stored depends upon the average semi-bandwidth, _, since each

row or column is stored only out to the last non-zero coefficient. The bandwidth of the

matrix is determined by node connectivity and by the ordering of equations in the linear

systems. Several algorithms exist which generate orderings which minimize bandwidth

and/or profile for a wide class of problems. (See, for example, George and Liu i° and

Everstine11.) For many problems solved using the finite element method the bandwidth

grows as the problem size increases. For very large problems the memory requirements

for banded solvers may exceed the main memory of the computer and methods which use

sparse matrix storage schemes may be necessary.

The memory requirements for iterative methods are generally much less than for direct

methods since there is no factorization which produces new non-zero terms. Both the input

matrix, K, and the preconditioning matrix, L, can be stored using sparse storage schemes.

For the conjugate gradient method preconditioned by diagonal scaling of the input matrix,

the key computational step is the matrix-vector multiplication required at each iteration.

In this case diagonal storage of K together with matrix multiplication by diagonals de-

scribed in the previous section is used to increase vector lengths and computation speed.

For diagonal storage the memory requirements depend not only upon the number of non-

zero coefficients but also upon the number of zeros allowed between successive non-zero

coefficients in each diagonal. The addition of zeros between successive non-zero coefficients

in a diagonal is controlled by a parameter, maxOs. Increasing rnaxOs increases the vector

length of the diagonals but requires more storage and introduces unnecessary computa-

tions into the matrix-vector multiplication. The tradeoff between increased computation

rate from using longer vectors and the additional time for unnecessary computations deter-

mines the optimum value for maxOs. Typical memory requirements for the total number

of coefficients stored using diagonal storage for some test problems using a value of rnaxOs
that minimizes runtime are between 1.5C and 2C where C is the number of non-zero

coefficients in the upper triangular part of K.

Incomplete Choleski preconditioning for the conjugate gradient method requires the addi-

tional solution of triangular systems, equations (2a) and (2b), at each iteration. L has the

same non-zero structure as the lower triangular part of K as described previously. The

non-zero coefficients of L are stored by columns with integer row indices stored for each

coefficient as well. The storage requirement for L is 2C. If K is stored using this same

sparse storage scheme then the memory requirements for the matrices stored for ICCG is

3C since the same index array can be used for the coefficients of both matrices.

Total memory requirements for both direct and iterative methods include matrix storage

as well as pointer arrays and other miscellaneous vectors used by the algorithms for the
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computations. Memory requirements, measured by the number of single precision words,

for the banded and profile direct Choleski solvers as well as three preconditioned conjugate

gradient methods are given in table 1. The three preconditioned conjugate gradient meth-

ods are: 1) JCG, diagonally scaling using diagonal storage for K, 2) ICCG1, incomplete

Choleski with sparse column storage of K and L, and 3) ICCG2, incomplete Choleski

preconditioning with diagonal storage of K and sparse column storage of L.

Performance Factors. The effective use of computers like the Cray-2, which have special

features that have significant effects on the speed at which computations are performed,

necessitates consideration of often conflicting factors in choosing which method to use

for a given task. Often an algorithm that requires more computations may actually be

significantly faster than another requiring fewer computations if the first algorithm better

exploits the vector capability of the Cray-2. In this section two main factors affecting the

relative performance of direct and iterative methods are discussed. These two factors

are the amount of computations required by each method and the rate at which the

computations can be done. Formulas are given for the number of floating point operations

for each method, allowing one to predict the relative performance of each method based

on a few key parameters such as problem size, convergence rate and computation rate.

Table 2 gives formulas for the number of floating point arithmetic operations required by

each method in terms of the problem size parameters given and the number of iterations,

iter, for the iterative methods. For the direct band and profile Choleski methods, the

number of computations is proportional to nm 2 and n_ 2, respectively. For the iterative

conjugate gradient methods, the number of computations is proportional to the number

of iterations required for convergence and C, the number of non-zero coefficients in K and

M. As n, rn, and _ increase for very large structural analysis problems the number of

non-zero coefficients in each row of K generally remains constant. The resulting effect

on the amount of computation is that for very large problems banded equations solvers

may require significantly more computation than iterative methods. Another factor which

affects bandwidth for structural analysis problems is the type of elements used in the

finite element model. Higher order elements generally lead to more coefficients and larger

bandwidth matrices for a given size problem.

The work per iteration for diagonally scaled conjugate gradient (JCG) is much less than for

incomplete Choleski preconditioning (ICCG), but is offset by an increase in the number of

iterations required for convergence compared to ICCG. The diagonal storage scheme used

for JCG increases the amount of computations required for the matrix-vector multiplication

when extra zeros are stored between successive non-zero coefficients along diagonals of K in

order to obtain longer vector lengths. There is a trade off between increased computation

rate and additional operations performed because of the added zeros.

The rate of computation for each method is the second major factor affecting the relative

performance of these methods. The direct Choleski methods achieve the highest compu-

tation rates of the methods studied in this report. The combined effect of longer vector

lengths (a function of m), loop unrolling, and use of fast local memory yield computa-

tion rates as high as 200 Mfiops (million floating point operations per second) for medium

bandwidth problems. The diagonally scaled preconditioned conjugate gradient method
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Table 1. Memory Requirements for Direct and Iterative Methods

Method Matrix Storage Total Memory

Choleski Banded

Choleski Profile

JCG

ICCG1

ICCG2

nm

_m

amax* + 4d

3nc + 2n

3nc + 2n

nm + 5n

n_ + 7n

amax* + 4d + 8n

3nc + lln

3nc + lln

* C < arnax <_ nrn

Table 2. Performance Factors for Direct and Iterative Methods

Method

Choleski Banded

Choleski Profile

JCG

ICCG1

ICCG2

Work

(+/×) Operations

nrn 2 + 6nrn - _m 3
7 2 17_
_m -- --_ir_

4D + 2n + iter x '4D + 10nt

4C - n + iter x [8C + llnl

4C - n + iter × (4C+4D+lln)

Estimated Rate

Rate (Mflops)

105 - 200

70 - 187

21 - 82

9 - 15

ii - 25

JCG -

ICCGI -

ICCG2 -

C _

D-

d

m-

m-

Jacobi Preconditioned Conjugate Gradient (diagonal scaling)

using diagonal storage of K

Incomplete Choleski Preconditioned Conjugate Gradient using

sparse column storage of K and L

Incomplete Choleski Preconditioned Conjugate Gradient using

diagonal storage for K, sparse column storage for L

number of non-zero coefficients in upper triangular part of K

number coefficients stored for upper triangular part of K

using diagonal storage

number of diagonals used to store K

number of equations, dimension of K

semi bandwidth of K including main diagonal

average semi-bandwidth of K including main diagonal
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using diagonal storageof K is not as fast as the Choleski method since the loop unrolling

techniques do not apply to the matrix-vector multiplications required at each iteration.

The slowest method was incomplete Choleski conjugate gradient which suffered from the

use of indirect addressing and shorter vector lengths. This imbalance in the computation

rates for the direct and iterative methods grants a substantial advantage to the direct

Choleski banded solvers for many problems.

INTEGRATION OF METHODS INTO CSM TESTBED

An important concern in the use of supercomputers for structural analysis applications is

the development of software which can be used for a great variety of applications while

exploiting the architecture of the computer. While some of the optimization of code for the

Cray-2 is automated through the use of the compilers, the greatest gains are still achieved

only when extensive changes are made both to the methods used and the underlying

data structures. It is often not feasible to rewrite a very large existing code to exploit a

particular architecture and therefore methods which can be adapted to existing codes are

very important. This section describes the integration of the direct and iterative solvers,

described previously, into the CSM Testbed, a large, research oriented, finite element code

developed at NASAs Langley Research Center. ( See Gillian12).

Data Structures. The key detail in implementing the equation solvers designed for the

Cray-2 architecture into the Testbed software was the data structures. The Testbed soft-

ware system functions through a global database management system with individual

processors, actually FORTRAN subroutines, called by a high level command language,

CLAMP, (e.g., Felippa 13) performing various tasks in a particular job and creating or

reading output through the global database. The generation of stiffness matrices is ac-

complished by several different processors producing element stiffness matrices, defining

boundary conditions, applying loads, ordering nodes, and assembling the stiffness matrices.

The stiffness matrices are stored in a block sparse form. For each node, blocks dimensioned

as a number of degrees-of-freedom × degrees-of-freedom contain non-zero coefficients asso-

ciated with each node connected in the finite element discretization. The sparse out-of-core

Choleski solver used by the Testbed code (processors INV and SSOL) factors and solves

the stiffness matrices using this data structure. A major obstacle for this solver on the

Cray-2 is that the operations carried out in factoring the stiffness matrix and solving the

resulting triangular systems are carried out using the small dot x dot blocks. The vector

length of these operations is typically 6 or less, and the code is faster when run without

vector optimization. Another drawback in the current Testbed code is that the use of out-

of-core solvers such as INV drastically increases the I/O overhead incurred in the solution

process thereby increasing the wall clock time for the solution process substantially.

Matrix Reformatinl_ Procedure. The strategy used to reformat the Testbed stiffness ma-

trices for the vectorized equation solvers is described next. The vectorized equation

solvers require K to be stored in core using several different sparse and banded stor-

age schemes. First, the coefficients of the unconstrained stiffness matrix are read from

the global database into a temporary array. Second, the joint constraint information and
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joint ordering sequence information is retrieved from the global database. Third, the ap-

propriate pointer arrays for the new storage scheme are formed. Finally the coefficients of

K are placed in a single dimensioned array and modifications are made to the right hand

side, f, corresponding to any applied fixed displacements. For the direct Choleski methods

an additional storage scheme was included to reformat Testbed stiffness matrices into the

standard LINPACK banded storage. The reformating procedure is essentially sequential,

but the time to reformat the matrices was small compared to the time to solve the equa-

tions for large problems. The success of this strategy means that efficient use of advanced

computer architectures may be possible for large-scale applications codes originally written

prior to the design of modern parallel and vector computers computers without completely

rewriting the code.

Node Reordering. An important part of equation solvers for general purpose finite ele-

ment codes is the node reordering capability. The structure of the assembled stiffness

matrices is determined by the node connectivities and node ordering scheme used in the

finite element model. While the node connectivity is fixed by the problem definition and

discretization, many possible node orderings are possible. The Testbed software contains

a processor, RSEQ, which uses four different algorithms to automatically reorder nodes.

These algorithms are nested dissection, minimum degree, reverse Cuthill-Mckee 10, and

Gibbs-Poole-Stockmeyer 11

The first two methods are used by sparse solvers and minimize fill in the factorization

process. The last two are profile and bandwidth minimizing routines, respectively. The

direct banded solvers are most efficient with the node orderings which minimize bandwidth

while the sparse Choleski Testbed equation solver is most efficient with orderings which

minimize fill. For the preconditioned conjugate gradient methods, the preconditioner used

determines which ordering is best. Although the precise relationship between grid ordering

and the convergence rate of ICCG is not known, experimental results show that the order-

ing of nodes can have a great effect on the convergence rate. In the test problems used with

the ICCG method, the sparse, minimum fill orderings were better for the convergence rate

of ICCG than the bandwidth minimizing orderings. However, in some cases, the ordering

used to define the problem gave the best convergence rate. For the JCG method, the matrix

structure has no effect on the convergence rate but the matrix structure is important for

the storage requirements if diagonal storage is used. Orderings which minimize bandwidth

also concentrate the coefficients near the main diagonal thereby minimizing the number of

diagonals required for matrix storage by diagonals. As a result the vector lengths of the

diagonals are longer, the number of extra zeros added between non-zero coefficients is less,

reducing the memory requirements, and the computation speed is increased.

An example of the effect of node ordering on the non-zero structure of K is shown in figure

9 for a blade-stiffened panel with 648 degrees of freedom. The non-zero structure of the

upper triangular matrix shown in figure 9a results from the node ordering used to define

the finite element mode]. Figures 9b and 9c show the change in the matrix structure from

using two different node reordering algorithms.
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Figure 9. Pattern of Non-Zero Coefficients tn the Upper Triangular Part
of Stiffness Matrices for 648 D.O.F Stiffened Panel Problem

Using Three Different Node Ordertngs
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RESULTS
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In this section, results are presented to demonstrate the performance of the direct and iter-

ative equation solvers on three example problems. These problems represent a wide range

of structural analysis applications. The three problems are a blade-stiffened panel, a cube-

shaped solid, and the Space Shuttle Solid Rocket Booster. Several implementations of the

new direct Choleski equation solvers described in this report are compared in detail for the

blade-stiffened panel problem. The equation solution time is given for each implementa-

tion along with the computation rate, the amount of work, and the overhead time required

to reformat the stiffness matrices. A similar detailed comparison of three preconditioned

conjugate gradient iterative methods is given for the same blade-stiffened panel problem.

Finally, the fastest equation solution times for both the new direct Choleski methods and

the new iterative preconditioned conjugate gradient methods are compared with the ini-

tial Testbed sparse, node-oriented Choleski equation solver for all three structural analysis

problems. The results show that the relative performance of the equation solvers varies

for the different problems. Several important factors are given which influence the choice

of equation solvers for these types of problems.

(a) Stiffened Panel

.... ,z:

(b) Finite Element Model

Figure 10. Composite Blade-Stiffened Panel with Discontinuous Stiffener

Description of Example Problems

Three example problems are considered using the CSM Testbed for model generation

and problem solution. The first problem is a blade-stiffened graphite-epoxy panel with
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a discontinuous stiffener and a central cutout hole. The panel is shown in figure 10a.

The panel stiffeners lie perpendicular to the panel, introducing three dimensions to the

finite element model, but the problem is essentially a two dimensional problem. The

panel problem was selected as a CSM focus problem because it has characteristics which

often require a global/local analysis. These characteristics include a discontinuity (the

hole), eccentric loading, large displacements, large stress gradients, and a brittle material

system. This problem represents a generic class of laminated composite structures with

discontinuities in which the interlaminar stress state becomes important. The geometry

and laminate properties are given in reference 14. The loading is uniform axial compression

with the loaded ends clamped and the sides free. The 3768 degree-of-freedom finite element

model shown in figure 10b contains 576 4-node quadrilateral elements. Another 3768

degree-of-freedom model containing 144 9-node quadrilateral elements was also considered.

The input is parameterized so that mesh sizes can be easily changed. The number of non-

zero coefficients per row and the bandwidth are greater for the stiffness matrix arising

from the 9-noded elements compared to the 4-node elements.

The second problem is a cube-shaped, isotropic solid constrained at the corner nodes on

one face and loaded with uniform pressure along the face opposite the constrained nodes.

This problem is representative of the detailed three dimensional model required in a local

stress analysis around the hole in the blade stiffened panel problem. The finite element

model used for the cube problem is composed of 729 8-noded solid elements with 3000

degrees of freedom and contains equal numbers of elements along each axis.

The third problem is a linear eIastic static analysis of the Space Shuttle Solid Rocket

Booster (SRB) loaded by uniform internal pressure. This problem is representative of large

scale structural analysis problems and demonstrates the reduction in analysis time possible

using the new equation solvers. The three-dimensional finite element model shown in figure

lla is composed of 9205 nodes and includes 9156 4-noded quadrilateral shell elements, 1273

2-node beam elements and 90 3-node triangular elements. The resulting stiffness matrix is

54,870 × 54,870 . An oblique view of the deformed geometry with exaggerated deflections

resulting from a uniform internal pressure of 1000 psi is shown in figure llb. A detailed

description and analysis of this problem is given in reference 14.

Performance of Direct Choleski Solvers

The execution times, computation rates, amount of work and overhead time required to

reformat matrices is given in table 3 for the vectorized Choleski solvers described in the

previous section. The LINPACK times, included as a reference, were obtained using the

LINPACK routines SPBFA and SPBSL available in the Cray-2 library, SCILIB. The two

different finite element models of the 3768 D.O.F stiffened panel problem compared in

table 3 demonstrate the effect of bandwidth on the performance of the direct solvers.

:For each problem, the nodes were ordered using the reverse Cuthill-McKee l° algorithm

to minimize bandwidth. The times given include the cpu time required by each method

for both the factorization of K and the required forward and backward triangular solves

(equations 2a and 2b). The computation rates given are computed using the total number

of vector additions and multiplications required by each method and the times for each

method. The overhead given for each method is the time in seconds required to reformat
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(a) Finite Element Model of SRB

(b) Deformed Geometry Plot of SRB Shell Model Loaded by Internal Pressure
Figure 11. Space Shuttle Solid Rocket Booster

the stiffness matrix from the Testbed sparse matrix storage into the required banded

storage. Higher computation rates are possible using dedicated user mode on the Cray-2,

and a substantial increase in the computation rate may also be possible if the algorithms

are written in assembly code for the Cray-2. However, the results show that substantial

improvements are possible without the loss of portability of the code.

The basic kji method is slightly faster than the LINPACK routines for the smaller band-

width panel problem but is essentially the same as LINPACK for larger bandwidth prob-

lems. The LINPACK routines use a form of Choleski factorization which computes inner

products in the innermost loop. For larger bandwidth problems the inner products are

nearly as fast as the saxpy operations used by the kji method. The positive effect of loop
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Table 3. Comparison of Banded and Profile Choleski Methods

for a 3768 D.O.F. Stiffened Panel Problem

Using 576 4-Noded Elements, 2910 Equations

Semi-bandwidth=425, Average Semi-bandwidth=230

Method

LINPACK

kji Banded

kji Banded*

kji Banded**

kji Profile

kji Profile*

kj{ Profile**

Time

(sec)

10.2

9.0

5.2

3.7

4.4

2.3

1.7

Rate

(mflops)

47

53

93

130

45

87

119

Work

(-/x)

479,104,101

479,104,101

479,104,101

479,104,101

196,321,325

198,255,170

198,255,170

Overhead

(reformat)

.43

.43

.43

.43

.44

.45

.45

Using 144 9-Noded Elements, 2910 Equations

Semi-bandwidth--860, Average Semi-bandwidth=437

Method

LINPACK

kji Banded

kjf Banded*

kji Banded**

kji Profile

kji Profile*

kji Profile**

Time

(see)

27.0

27.4

17.7

12.7

12.7

7.9

5.7

Rate

(mflops)

64

63

98

137

57

87

128

Work

(-/x)

1,737,086,982

1,737,086,982

1,737,086,982

1,737,086,982

724,292,145

729,5O7,322

729,507,322

Overhead

(reformat)

.69

.69

.69

.71

.74

.74

.74

* Loop unrolling to level 4.

**Loop unrolling to level 4 and use of local memory.

unrolling and use of local memory by the modified kji methods is demonstrated by the

decrease in execution time and increase in computation rate for both panel problems. The

effect of bandwidth on execution time is shown by comparison of execution time and work

for both panel problems. Doubling the bandwidth (425 to 860) results in a nearly 4-fold in-

crease in the number of operations performed and an increased execution time. The longer

vector lengths which result from the increased bandwidth improves the computation rate
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for the secondpanelproblem, but only slightly. The reducedtimes for the profile Choleski
methods are also due to reducedoperation counts. The averagebandwidth given for each
problem is a measureof the reduction of the bandwidth when using the profile Choleski
method compared to the full bandwidth using the kji methods with banded storage only.

The improvements made to the basic kji method resulted in an approximately 5-fold de-

crease in the execution time for both panel problems with maximum computation rates of

over 130 Mfiops.

Performance of Iterative Solvers

The performance of the threepreconditioned conjugate gradient iterative methods de-

scribed in this report is given in table 4 for the two panel problems. Results for three

different node orderings are given, demonstrating the effect of node orderings on the con-

vergence and execution time for the iterative methods. The three node orderings used are

illustrated in figure 9 for a reduced-size panel problem. The first node ordering for each

problem is the node ordering defined by the problem definition. For the panel problems

the nodes around the central hole were numbered first, followed by the in-plane nodes,

and then each group of stiffeners. The resulting non-zero matrix structure is shown in

figure 9a for a 648 D.O.F blade-stiffened panel. The matrix in figure 9a does not have

small bandwidth but has regular patterns within the regions numbered separately requir-

ing fewer diagonals to store the matrix coefficients and resulting in longer vector lengths in

the matrix-vector multiplications. The matrices shown in figure 9b and 9c are for the same

648 D.O.F panel using the minimum degree l° and reverse Cuthill-McKee 1° orderings, re-

spectively. The convergence of the JCG method is unaffected by the node ordering used

as seen by comparing the number of iterations for JCG for each node ordering in table 4.

However, a comparison of the work required for the three orderings for JCG in table 4 for

both panel problems shows that the operation counts are much higher for both the mini-

mum degree orderings and the reverse Cuthill-McKee orderings. The increased operation

counts and slower computation rates result in slower execution times for JCG for both the

minimum degree l° and reverse Cuthill-McKee 1° orderings. For orderings which result in

a more random distribution of non-zero coefficients, the number of diagonals used to store
the coefficients increases as does the number of zeros added between successive non-zero

coefficients along a given diagonal. In general, the bandwidth minimizing node orderings

are good since they tend to concentrate the coefficients nearer the main diagonal, but the

panel problems indicate that orderings which are regular within regions may also be good

for minimizing diagonal storage requirements.

The incomplete Choleski preconditioned conjugate gradient methods, ICCG1 and ICCG2,

are the same except that ICCG2 uses diagonal storage for the stiffness matrix to improve

the computation rate. The larger overhead required by the JCG and ICCG2 methods in

table 4 shows that the diagonal storage scheme requires a longer time for reformatting the

matrices than the sparse storage scheme used for the preconditioning matrix L. A com-

parison of the convergence results and the amount of work for both panel problems shows

that incomplete Choleski preconditioning does reduce the number of iterations required

for convergence as well as the amount of work required but at the expense of much slower

vector performance. The slower computation rates shown for the ICCG methods in table
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Table 4. Comparison of Iterative Methods for 3768 D.O.F.

Stiffened Panel Problem

Using 576 4-Noded Elements, 2910 Equations

50494 non-zero coefficients stored, q = .35

Method

JCG

ICCG1

ICCG2

JCG*

ICCGI*

ICCG2*

JCG**

ICCGI**

ICCG2**

Convergence

(iterations)

678

231

231

678

264

264

678

265

265

Time

(sec)

4.3

9.4

8.3

17.2

12.4

18.4

6.7

11.5

11.0

Rate

(mflops)

56

10

15

21

9

11

51

10

17

Work

(+/x)

240,440,514

97,521,702

128,825,922

365,473,950

110,511,352

195,120,552

340,161,216

111,456,882

186,495,048

Overhead

(reformat)

.56

.42

.62

.55

.41

.61

.55

.42

.61

Using 144 9-Noded Elements, 2910 Equations

88625 non-zero coefficients stored, _/-- .08

Method

JCG

ICCG1

ICCG2

JCG*

ICCGI*

ICCG2*

JCG**

ICCGI**

ICCG2**

Convergence

(iterations)

857

224

223

857

158

158

857

176

175

Time

(sec)

11.5

12.0

11.8

29.3

10.3

15.3

18.0

10.0

11.8

Rate

(mflops)

5O

14

2O

26

11

13

52

13

22

Work

(+/x)

573,088,330

161,115,062

223,280,328

765,933,912

118,240,182

201,472,198

939,011,468

133,018,764

259,766,382

Overhead

(reformat)

.95

.71

1.06

.93

.72

1.02

.95

.71

1.03

* Minimum Degree Node Ordering

** Reverse Cuthill-Mckee Node Ordering

JCG -

ICCG1 -

ICCG2 -

Jacobi Preconditioned Conjugate Gradient (Diagonal scaling)

using diagonal storage of K

Incomplete Choleski Preconditioned Conjugate Gradient

using sparse column storage of K and L

Incomplete Choleski Preconditioned Conjugate Gradient using

diagonal storage for K, sparse column storage for L

Shifting parameter for incomplete factorization

23



4 are due to short vector lengths (less than 20 for the first panel problem) and indirect
addressingrequired by the sparsetriangular solves. The first node ordering wasbest for
the first panel problem but the minimum degreeordering wasbest for the secondproblem
indicating that the best node ordering varies for different problems. The convergencepa-
rameter used for both problems wasexperimentally obtained and was markedly different
for each of the panel problems. For the runs given in table 4 the parameter -_ was the

same for all runs of each of the two problems, although small improvements in the number

of iterations can also be obtained by varying the parameter for each ordering. The value

of _ chosen for the panel problems is the largest -y required among the three orderings

to insure positive diagonal elements in D. A general strategy for choosing "_ for a given

problem is to perform the incomplete factorization beginning with q = 0 and repeating

with an increased ff if negative diagonal terms are computed for the diagonal matrix D.

The execution times in table 4 show that JCG was the fastest method for the first panel

problem but ICCG1 was fastest for the second problem. These mixed results for the iter-

ative methods demonstrate the interaction between the computation rate and the amount

of work for each method. In the first problem there are fewer non-zero coefficients in the

stiffness matrix, reducing the amount of work per iteration. The ratio of work performed

by JCG to the work performed by ICCG1 is nearly 2.5 to 1 and on a serial Computer

the ICCG1 method would be 2.5 times faster than the JCG method. However the JCG

method runs 5.6 times faster than the ICCG1 method and so the combined effect of these

two factors is that JCG is faster by a factor of 2 on the Cray-2. The ICCG2 method has a

higher computation rate due to the longer vector lengths for the matrix-vector multiplica-

tions in each conjugate gradient iteration, but it also requires more work than the ICCG1

method, offsetting most of the gain in computation rate. For the second problem the

ICCG1 method using the reverse Cuthill-McKee algorithm is slightly faster than the JCG

method using the first node ordering. The minimum degree ordering converged fastest for

this problem, but a lower computation rate resulted in a lower execution time than the

reverse Cuthill-Mckee ordering. For both node orderings for ICCG1, the ratio of work for

JCG using the fastest node ordering to work for ICCG1 is much higher (nearly 5 to 1)

than for the first problem. This is largely because the second problem did not converge

as fast for JCG as did the first (857 iterations compared to 678) while the ICCG methods

converged faster for the second problem. In addition, computation rates are faster for the

ICCG methods for the second problem due to longer vector lengths resulting from more

coefficients in each row of the matrices. The greater reduction in the amount of work cou-

pled with higher computation rates for the ICCG methods on the second panel problem

improved the performance of the ICCG methods relative to JCG.

A general conclusion from the comparison of JCG and ICCG methods is that the incom-

plete Choleski preconditioning is not as effective for reducing execution time on vector

computers like the Cray-2 as it has been on serial computers due to the severe penalty

of reduced computation rate resulting from indirect addressing and short vector lengths.

However, for problems where the preconditioning reduces the amount of work sufficiently,

some improvement in execution time may be realized.
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Comparison of Equation Solvers

Comparisons of four solvers - the fastest new direct Choleski solver, the JCG iterative

solver, the fastest ICCG iterative solver, and the initial Testbed sparse Choleski equation

solver (INV/SSOL) - are given in table 5 for all three example structures problems. The

times for the sparse Choleski equation solver may not be representative of state-of-the-art

sparse equation solvers but the times do indicate some key performance factors for sparse

Choleski methods on the Cray-2. The memory requirements given in table 5 include the

total number of 64-bit words required for the upper triangular matrices including the main

diagonal and any required index arrays by each method.

Speed vs. Work. A comparison of the computation rates and the work for each method

indicates that an increased amount of work sometimes offsets a fast computation rate for

some methods. The direct vectorized Choleski solvers have much higher computation rates

than the iterative or sparse Choleski solvers on all three problems. However, the direct vec-

torized Choleski solvers generally require much more work than both the iterative solvers

and the Testbed sparse solvers. This extra work limits the speedup actually obtained as

measured by the execution time. For example, on the SRB problem, the computation rate

for the skyline Choleski solver is over 30 times greater than the computation rate of the

Testbed sparse solver but at the expense of 3 times as much work compared to the sparse

solver. As a result the execution time for the skyline solver is just over 10 times faster than

the sparse solver. For the 3-D cube problem the fast convergence of the iterative methods

results in a much lower amount of work compared to both other solvers. The JCG method

is faster than both the sparse Choleski solver and the banded Choleski solvers for this

problem even though the computation rate of JCG is only half that of the kji banded

solver.

The ICCG iterative methods require less work than the JCG iterative method for all four

problems in table 5, indicating the effect of improved convergence rates for the ICCG

method compared to JCG. However, the JCG iterative method has a higher computation

rate than the ICCG iterative methods for all four problems and requires less cpu time

than ICCG for two of the four problems. On a scalar computer the ICCG methods would

be the fastest for all four problems but the better vector performance of the JCG method

relative to the ICCG methods gives different results on the Cray-2.

Banded vs. Sparse Storage. The amount of work and memory requirements for the two

panel problems illustrates a key difference between the vectorized Choleski solvers which

use banded or profile storage and the iterative and sparse Choleski solvers which use

various sparse storage schemes. For the banded and skyline storage schemes doubling

the bandwidth of the panel stiffness matrices by using 9-node elements instead of 4-node

elements doubled the storage requirements but nearly quadrupled the amount of work.

This increase is expected since the amount of work for the factorization is proportional to

the square of the bandwidth. For the iterative methods the storage requirements for the

9-node element panel problem are also doubled since the number of matrix coefficients is

nearly doubled. However, the amount of work is only doubled for the iterative methods

since the work for matrix-vector multiplications is proportional only to the number of non-

zero coefficients in the matrix. This key difference between algorithms which use banded
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Table 5. Comparison of Equation Solvers for Example Problems

Method* Time

(sec)
Rate

(mfiops)
Work Memory

(+/x) (64-bit Words)

Overhead

(reformat)

Panel, 4-Noded Elements, 2910 Equations, 50,494 Coefficients

Bandwidth=425, Average Bandwidth=229

kji Profile

JCG (678)
ICCG2(231)
INV/SSOL

1.7

4.3

8.3

6.9

119

56

15

8

198,255,170

240,440,514

128,825,922

53,002,512

671,201

81,198

249,414

.45

.56

.61

Panel, 9-Noded Elements, 2910 Equations, 88,625 Coefficients

Bandwidth=860, Average Bandwidth=439

kji Profile

JCG (857)
IccG1 (176)
INV/SSOL

5.7

11.5

10.0

6.5

128

50

13

8

729,507,322

573,088,330

133,018,764

48,771,072

1,277,961

168,580

262,965

.73

.95

.70

3-D Cube,

kji Banded

Jcc (125)
ICCG2(53)
INV/SSOL

8-Noded Solid Elements, 2988 Equations, 99,525 Coefficients

Bandwidth=336, Average Bandwidth=315

1.9 169

.9 83

2.9 23

51.8 3

315,876,861

73,619,432

67,947,440

168,123,600

1,003,968

132,418

420,222

.52

.74

.84

SRB 54,870 Equations, 1,311,308 Coefficients

Bandwidth=894, Average Bandwidth=382

kji Profile

JcG (3114)
ICCG2 (562)

INV/SSOL

75.2

697.3

455.5

821.3

127

49

2O

4

9,573,921,190

34,039,466,610

9,205,794,048

2,974,589,780

20,978,317

2,632,762

5,326,524

7.54

10.95

12.31

* Number of iterations in ( ) for iterative methods.

kji Profile -

kji Banded-

JCG

ICCG1 -

ICCG2 -

INV/SSOL-

Choleski, profile storage, loop unrolling to level 4, local memory

Choleski, banded storage, loop unrolling to level 4, local memory

Jacobi Preconditioned Conjugate Gradient (Diagonal scaling)

using diagonal storage of K

Incomplete Choleski Preconditioned Conjugate Gradient

using sparse column storage of K and L

Incomplete Choleski Preconditioned Conjugate Gradient using

diagonal storage for K, sparse column storage for L

Testbed sparse, node-oriented Choleski factor and solve routines
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storage schemesand algorithms which usesparse storage schemesmeans that for very
large problems where the bandwidth grows as the problem size increases,the number of
computations required by the banded storage algorithm may eventually make the sparse
solversfaster even though they are not asefficient on the Cray-2 architecture.

Initial Solver vs. New Solvers. A comparison of the amount of work required by the banded

solver to the work required by processors INV and SSOL for each problem indicates the

varying effectiveness of finding node orderings which minimize fill for the sparse Choleski

solver. The sparse Choleski solver was actually faster for the 9-node element panel problem

even though the stiffness matrix contains more non-zero coefficients. This is most likely

due to the minimum degree node ordering being more effective in minimizing fill for the

9-node element panel problem. The ratio of work required by the profile solver compared

to the work required by processors INV and SSOL is over 15 to 1 while for the cube

problem the same ratio for the banded Choleski solver to INV and SSOL is less than 2

to 1. A better sparse solver would probably make the sparse solver faster for the 9-node

element panel problem, but it is doubtful that enough improvement could be made in the

computation rate for the cube problem or the SRB problem to make the sparse solver

competitive with the best times for the new solvers.

Overhead Time. The overhead time required to reformat the stiffness matrices from the

sparse storage scheme used by the Testbed into the in-core storage schemes used by each

solver is also given in table 5. The overhead is small compared to the equation solution

time for each problem. This small overhead time is important because it demonstrates the

possibility of obtaining significant reductions in solution time for computationally intensive

portions of a large existing code without rewriting the entire code. This strategy can be

applied to other computation modules in a large code, providing an interface between code

which is designed to exploit a given advanced architecture and code which is written for a

general purpose applications code independent of the specific computer architecture.

Summary. Substantial reductions in the time required to solve linear systems for structural

analysis problems can be made by the correct choice of methods as demonstrated by a com-

parison of solution times in table 5. The choice of methods must be based on the relative

efficiency of each method on the given computer architecture and on several additional fac-

tors which affect the amount of work required by each method. The direct methods which

use banded or profile storage are much more efficient than the sparse Choleski solver as

measured by computation rate but they require much more memory. For very large prob-

lems with only moderate average bandwidth, such as the SRB example problem, the profile

solver is much faster than the sparse solver. Higher bandwidth problems require substan-

tially more work for the banded or profile Choleski methods and fast sparse solvers may

be better. The efficiency of sparse solvers depends greatly on finding node orderings which

minimize the fill which occurs during the factorization stage but is also limited by the need

for indirect addressing due to the sparse storage schemes. The relative performance of the

preconditioned conjugate gradient iterative methods is influenced greatly by the condition
number of the stiffness matrix. The diagonal storage scheme significantly improves the

computation rate for many problems, and, for well conditioned problems, reduced memory

requirements and faster execution times compared to the direct methods make the itera-
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tive methods superior. The most effective preconditioning strategies are also very costly
in terms of efficiencyon the Cray-2, limiting their usefulnesson many problems.

Concluding Remarks

Two approacheshave been describedfor solving linear systems of equations and results
havebeen presented for three structural analysisproblems representative of a wide class
of structural analysis problems. Direct methods have been described which exploit the
architectural features of the Cray-2 and perform best for large problems with moderate
sizebandwidths. The iterative methods describedarenot able to exploit the Cray-2 archi-
tecture aseffectively as the direct methods but are superior for well-conditioned problems
and require lessmemory than the banded solversfor very large problems. The new meth-
odswere evaluated by installing the methods in the CSM Testbed and solving structural
analysisproblems. The newequation solverssignificantly improve computerizedstructural
analysisby reducing the equation solution time required by the analysis. Both the direct
and iterative methods take advantage of the very large main memory of the Cray-2 by

storing the matrices in main memory.

The strategy of incorporating computationally efficient modules or routines into large ex-

isting code is an effective way to significantly improve the performance of existing software

of new advanced computer architectures. The small overhead required to reformat matrices

for the problems considered in this report demonstrates the effectiveness of this strategy.

More research is necessary both to develop iterative methods with better preconditioners

which are not limited by short vector lengths and indirect addressing and to identify the

classes of problems for which iterative methods are superior. Very large three dimensional

problems with only displacement degrees of freedom may be well conditioned and thus

attractive for iterative methods. Non-linear problems requiring many solutions of linear

systems where the solution of one system from the previous step is a good approxima-

tion to the solution at the current step are also attractive for iterative methods. Parallel

versions of the methods presented in this report also may result in significant reductions

in execution time for very large problems by using the multi-processing capability of the

Cray-2.
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